Study of astrophysically important low-energy resonances in α+²²Ne reaction using ⁶Li(²²Ne,²⁶Mg)d alpha transfer with TIARA and MDM spectrometer

S. Ota, G.A. Christian, E.A. Bennett, S. Dede, H. Jayatissa, J. Hooker, C. Hunt,

C. Magana, G. Rogachev, A. Saastamoinen, S. Upadhyayula,

W.N. Catford, ¹S. Hallam, ¹G. Lotay, ¹M. Mouhkaddam, ¹ and R. Wilkinson¹

¹University of Surrey, Guildford GU2 5XH, United Kingdom

In core He burning and C-shell burning of massive stars (> 8 solar mass), the ²²Ne(α ,n)²⁵Mg reaction is considered to be a dominant neutron source for the weak s-process during which nuclides in the A=60-90 mass range are produced [1]. The reaction also largely contributes to the neutron production for the main s-process in He-low and intermediate mass asymptotic giant branch (AGB) stars during which nuclides in the A~90-209 are produced [1]. Some attempts to experimentally determine the rate for this reaction at the Gamow window corresponding to the *s* process temperatures (T = 0.2-0.3 GK, equivalent to E_a = 400 – 900 keV, where E_a is energy of α particle in the laboratory system, and E_x=10.9-11.5 MeV, where E_x is excitation energy of ²⁶Mg) have been made through direct (²²Ne+⁴He or α +²²Ne) measurements [e.g., 2]. However, they have been hindered by the small cross section due to the Coulomb barrier and the resonance at E_a ~ 830 keV (E_x ~ 11.32 MeV in ²⁶Mg excitation energy) is the lowest resonance identified with this method. Although indirect methods such as ²⁶Mg(α , α ')²⁶Mg,

FIG. 1. Level scheme of ²⁶Mg at energy range of our interest. Although the lowest resonance identified by direct measurements is $E_x=11.32$ MeV ($E_{\alpha}=832$ keV), indirect measurements have identified many lower resonances. Previous (⁶Li,d) measurements in normal kinematics [e.g., 4 and 5] observed four resonances in Gamow window. $E_x=11.32$ MeV and 11.17 MeV are considered the most important contributors to ²²Ne(α ,n) reaction for the s-process [e.g., 5].

²²Ne(⁶Li,*d*)²⁶Mg, ²⁵Mg(n, γ)²⁶Mg, ²⁶Mg(γ , γ ')²⁶Mg reactions [e.g., 3-6] have been used to identify lowerenergy resonances, there remain many uncertainties in spin-parity (J^{π}), partial wave widths of respective decay channels (Γ_{γ} , Γ_n and Γ_a) of these resonances. Since past studies identified particularly two resonances, E_x=11.32 and 11.17 MeV above neutron separation energy (S_n=11.093 MeV), have the largest contribution to the neutron production during the s-process, unambiguously determining J^{π}, Γ_{γ} , Γ_n and Γ_a for these resonances is important. Fig. 1 shows the summary of level scheme in ²⁶Mg relevant to the present study.

To determine these resonance parameters, we performed an experiment using the ⁶Li(²²Ne,²⁶Mg)d α -transfer reaction. Because both the α and ²²Ne have ground states with J^{π}=0⁺, the α -transfer reaction preferentially populates natural parity states in ²⁶Mg. This helps us to enable studies of the resonance parameters of astrophysically relevant natural parity states in ²⁶Mg, and J^{π} of these resonance states can be determined by measuring the angular distribution of deuterons. Furthermore, the inverse kinematics approach enables us to determine Γ_n / Γ_γ by direct measurements of the ratio of produced ²⁵Mg (²⁶Mg* \rightarrow ²⁶Mg(²⁶Mg* \rightarrow ²⁶Mg_{g.s.} + γ) ions at the resonance states. Determining Γ_n / Γ_γ is important to understand the neutron yield of these resonances. The ²²Ne(α,γ)²⁶Mg reaction can be of considerable strength to compete with the ²²Ne(α,n)²⁵Mg reaction at E_x=11.32 and 11.17 MeV resonances and therefore could significantly suppress neutron production for the s-process.

The experiment was performed at Cave 3 using a 7 MeV/u²²Ne beam from the K150 cyclotron. ⁶Li-enriched (99%) lithium flourite (LiF) targets with the thickness of 30 µg/cm² on a graphite backing foil (10 μ g/cm²) were prepared so that the effect of the energy loss of the ²²Ne beam and deuterons in those materials on the final energy resolution will be negligibly small. The beam bombarded the target at an intensity of about 3 nA for about 10 days. A large Si detector array, TIARA [8] was used for measuring the energies and angular distribution of light particles (deuterons). The deuteron energies and angles were used to determine excitation energies of ²⁶Mg. TIARA consists of two types of Si detectors, Hyball and Barrel, which cover $145 - 170^{\circ}$ and $40-145^{\circ}$ in laboratory frame, respectively (see [8]). TIARA was surrounded by four HPGe clover γ -ray detectors, which were used to confirm the populated states of ²⁶Mg. Recoil Mg ions were delivered to the Oxford ionization chamber placed at the back of the MDM spectrometer at 0° with $\pm 2^{\circ}$ acceptance [9]. The Oxford chamber consists of four proportional wire counters to determine the trajectories of particles and two MicroMegas detectors to measure the deposited energies in the gas (see details in [10]). The chamber was filled with isobutene gas at 35 torr to stop the Mg ions with the energies of our interests in the region of the second MicroMegas detector. The first and the second MicroMegas detectors thus provide ΔE and E_{res} (residual energy), respectively, and the Mg ions are clearly identified from other elements as shown in [11]. Moreover, ^{26,25}Mg isotopes were identified from each other based on the hit positions on the second wire which is located near the focal plane.

Since the Barrel has insufficient energy resolution to resolve the resonances in ²⁶Mg, it was mostly used to measure elastic scattering. Data from the Hyball is shown in the following analysis. Fig. 2 shows 2D histograms of ²⁶Mg excitation energy and hit positions on the second wire in the Oxford chamber, gated on (a) ²⁶Mg and (b) ²⁵Mg, respectively. It can be seen a blob (inside the circle) increases the excitation energy with the hit position (rigidity) decreased in the Fig. 2(a). This is because the more

highly ²⁶Mg is excited, the lower rigidity (kinetic energy) it has. The background events (outside the circle) are mostly protons, which was confirmed by the E- Δ E plot obtained by the Barrel. In the Fig. 2 (b), the blob ((⁶Li,d+n)) spreads more widely because an evaporating neutron from ²⁶Mg deposits various momentum to the leftover ²⁵Mg. In the right side of the (⁶Li,d+n) blob is ²⁵Mg ions produced by ²²Ne(⁶Li,t)²⁵Mg reactions. It is worth noting that the ²⁶Mg (by ²²Ne(⁶Li,d+ γ)) disappears in Fig. 2 (a) and ²⁵Mg (²²Ne(⁶Li,d+n)) appears in Fig. 2(b) at nearly S_n=11.09 MeV. This proves that our energy determination is reliable.

FIG. 2. 2D histograms of E_x (determined by Si detectors) and hit positions of Mg ions on the second wire of the Oxford chamber, (a) ²⁶Mg and (b) ²⁵Mg.

The excitation energy spectrum of ${}^{26}Mg$ is shown in Fig. 3. The spectrum covered by red shadow is obtained by gating on ${}^{26}Mg$ (the ((${}^{6}Li,d+\gamma$) blob) and the total spectrum (blue line) was

FIG. 3. ²⁶Mg excitation energy spectrum (red shadow: contribution from ²²Ne(⁶Li,d)²⁶Mg, blue: sum of contributions from ²²Ne(⁶Li,d)²⁶Mg and ²²Ne(⁶Li,d+n)²⁵Mg). E_x =11.32 MeV resonance peak is distinct in both spectra.

obtained by gating on both ²⁶Mg and ²⁵Mg (the (⁶Li,d+n)) blob). It is confirmed that the both spectra (²⁶Mg and ²⁵Mg+²⁶Mg) show a distinct peak at Ex=11.32 MeV. On the other hand, no distinct peak was observed at E_x =11.17 MeV which was clearly observed by [5]. This may be just because the state is not / very weakly populated as reported in [4]. Currently we are making an effort to extract the numbers of events for these resonances with multiple-Gassian fitting assuming various conditions. This will shortly lead to determining J[#] and Γ_n / Γ_γ and we will study its influence on the s-process nucleosynthesis.

- [1] F. Kappeler, Prog. Part. Nucl. Phys. 43, 419 (1999).
- [2] M. Jaeger et al., Phys. Rev. Let. 87, 20 (2001).
- [3] P. Adsley et al., Phys. Rev. C 96, 055802 (2017).
- [4] U. Giesen et al., Nucl. Phys. A561, 95 (1993).
- [5] R. Talwar et al., Phys. Rev. C 93, 055803 (2016).
- [6] C. Massimi et al., Phys. Let. B 768, 1 (2017).
- [7] R. Longland et al., Phys. Rev. C 80, 055803 (2009).
- [8] M. Labiche et al., Nucl. Instrum. Methods Phys. Res. A614, 439 (2010).
- [9] D.M. Pringle et al., Nucl. Instrum. Methods Phys. Res. A245, 230 (1986).
- [10] A. Spiridon et al., Nucl. Instrum. Methods Phys. Res. B376, 364 (2016).